Folate and cancer prevention: a closer look at a complex picture1–3

Cornelia M Ulrich

Folate is thought to play a significant role in cancer prevention. Epidemiologic evidence consistently shows inverse associations between higher intakes of dietary folate (or higher concentrations of respective biomarkers) and a reduced risk of cancer of the colon, of other parts of the gastrointestinal tract, and, more recently, of the pancreas. In addition, genetic polymorphisms in folate metabolism have been associated with these malignancies and, further, with those of the hematopoietic system. These genetic studies have also shown consistently that gene-nutrient interactions exist and that an evaluation of genetics without assessment of dietary intakes or supplement use related to folate-mediated one-carbon metabolism provides only an incomplete picture (1).

Many experimental studies have substantiated the observational findings: folate’s possible cancer-preventive properties have been attributed to its function in the de novo synthesis of thymidylate and purines—nucleotides that are needed for DNA replication and repair. Furthermore, adequate folate status is important for the production of S-adenosylmethionine (SAM), a universal donor of methyl groups for a number of methylation reactions, including DNA methylation (2). DNA methylation is central to gene silencing and probably to the suppression of repetitive DNA of viral origin, which comprises considerable parts of the genome (3). Yet, despite the evident link between the methyl donor SAM and folate metabolism, it is currently not well defined how folate status affects DNA methylation, both at gene promoters and on a genomic level, and what the consequences are for cell biology.

However, the role of folate in carcinogenesis is more complex than was initially thought. Several lines of experimental data suggest that the timing and dose of folate supplementation during carcinogenesis can matter (4, 5). Although increases in folate before the existence of preneoplastic lesions (such as aberrant crypt foci or polyps in the colon) can prevent tumor development, supplementation with synthetic folic acid may enhance progression once preneoplastic lesions are present. Similarly, animal experiments suggest that modest supplementation can reduce carcinogenesis, whereas excessive supplementation may increase tumor growth (6). These opposing effects are thought to be attributable to folate’s function in nucleotide synthesis, which is needed to support rapidly proliferating tissues. Cancers frequently up-regulate folate receptors to meet their elevated need for nucleotides to support DNA synthesis and growth. Folic acid is more bioavailable than is folate and, thus, is probably more potent in fostering growth. Recently, a randomized controlled trial of chemoprevention of polyp recurrence with folic acid (1 mg/d) showed an increased risk of advanced or multiple adenomas after multiple years of intervention (7); these results suggest that the role of folate in fostering the growth of precancerous lesions is a valid concern for humans at intakes that can be achieved with a combination of supplement use and fortification with folic acid (8). The results are particularly relevant because ≈30% of adults aged >60 y harbor intestinal polyps (9), yet many do not undergo colonoscopic screening for polyp detection and removal.

In this issue of the Journal, the work by Ericson et al (10) adds a new chapter to the evolving story of folate and cancer prevention. Within the Malmö Diet and Cancer cohort of 11 699 women aged ≥50 y, they observed strong inverse associations between dietary intakes of folate and invasive breast cancer, with risk reductions of >40% in the highest compared with the lowest quintile of intake. These associations are substantially stronger than those reported from previous cohort studies, which have generally shown no relation between folate and breast cancer alone, yet that have noted quite consistently that higher folate intakes or biomarkers thereof were protective in women with a high intake of alcohol. A high consumption of alcohol is an established risk factor for postmenopausal breast cancer, and an interaction with folate is biologically plausible because of the role of alcohol in inhibiting the absorption and metabolism of folate (11).

The question arises as to why much stronger inverse trends were seen in the Swedish cohort than in previous largely United States–based cohort studies. There are several possible explanations for this observation. First, Ericson et al conducted a very thorough assessment of diet and supplement use, which involved the use of a 7-d menu book for major meals, a food-frequency questionnaire, and a complementary interview. It would be helpful to know whether folate intakes estimated with these methods show stronger correlations with biomarkers, such as erythrocyte folate, than do those obtained with the more standard food-frequency questionnaires. Second, the Swedish study population, of which only 19% are supplement users, had lower intakes

1 From the Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA.
2 Supported by National Institutes of Health grants CA 105437 and CA59045.
3 Reprints not available. Address correspondence to CM Ulrich, Cancer Prevention Program, FHCRC, M4-B402, Seattle, WA 98109-1024. E-mail: nulrich@fhcrc.org.
of folic acid than did the US populations previously studied. If only a very low folate status increases the risk of invasive breast cancer, then strong associations can be detected only in study populations that include a sufficient number of subjects in the low-folate range (Figure 1).

This finding raises the question of whether intakes that exceed an “adequate” level are still protective against breast cancer risk. Overall, there is little evidence of an additional reduction in risk at above-adequate folate intakes, even though this may be the case for women with high alcohol consumption. Furthermore, recent reports from the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO) study population suggest that a very high folate status, attributable to supplement use, may increase cancer risk. The optimum folate intake for breast cancer prevention is not well defined. It likely depends on the amount of alcohol consumed and on genetic characteristics, including polymorphisms in folate metabolism.

FIGURE 1. Hypothesized nonlinear relation between folate status and breast cancer risk. Epidemiologic studies suggest that a higher folate status may reduce the risk of postmenopausal breast cancer in women with very low folate intakes. However, there is little evidence that women with adequate folate intakes derive further benefit. Some studies report that very high folate intakes, attributable to supplement use, may increase cancer risk. The optimum folate intake for breast cancer prevention is not well defined. It likely depends on the amount of alcohol consumed and on genetic characteristics, including polymorphisms in folate metabolism.

REFERENCES