The studies of many investigators have led to a unified concept of the megaloblastic anemias as a single morphologic entity due to defective nucleoprotein synthesis from various causes. The vast majority of patients with megaloblastic anemia have been found to have deficiency of vitamin B₁₂ of folic acid, or of both vitamins. For this reason, the possible interrelations of these two vitamins have long piqued the curiosity of investigators (1, 2).

Orally administered or injected pteroylglutamic acid (PGA) (folic acid) has been reported to disappear rapidly into the tissues of vitamin B₁₂-deficient patients, as manifested by rapid disappearance of *Streptococcus faecalis* activity from serum and urine (3–6).

The purpose of the present investigation was to determine whether the rapid disappearance of folic acid activity for *S. faecalis* from the serum of subjects with pernicious anemia reflects tissue depletion of folic acid, as believed by prior investigators, or instead indicates inadequate utilization of folic acid due to vitamin B₁₂ deficiency. Prior results of part of these studies (7–10) suggest that the latter is the case. Incidental to these observations, the effect of intravenously administered PGA on serum vitamin B₁₂ and on erythrocyte folic acid activity was determined.

The studies here presented elaborate on our preliminary reports (7–10), indicating that folic acid activity “piles up” in human serum in the presence of vitamin B₁₂ deficiency. The accumulation of this folic acid activity (probably N⁵-methyl-tetrahydrofolic acid) provides direct evidence of deranged folic acid metabolism due to vitamin B₁₂ deficiency. This folic acid-vitamin B₁₂ interrelationship may explain much of the confusion in therapy of pernicious anemia, as well as the fact that the anemias of vitamin B₁₂ and folic acid deficiencies are hematologically identical.

MATERIALS AND METHODS

*Synthetic pteroylglutamic acid*¹ was diluted with saline to a concentration of 1 mg per ml. The concentration was proven by microbiologic assay with both *S. faecalis* and *Lactobacillus casei*, and the solution was stored at 4°C in sterile light-tight bottles.

Procedure. The subjects of the investigation were given 15 µg of PGA per kg of body weight by rapid intravenous injection (5). Blood samples were obtained at zero time (immediately before) and at 3, 8, 15, 30, 60, 120, 240, and 1,440 minutes (24 hours) after the injection. Serum samples were obtained in plain Vacutainers and whole blood samples in heparinized Vacutainers.

Estimations of folic acid activity in serum and erythrocytes. These were carried out by microbiologic assay with *L. casei* and *S. faecalis* as previously reported (8), using both the “standard method” (150 mg per 100 ml ascorbate) and the “aseptic addition method” (1 g per 100 ml ascorbate) (8). The latter method has the advantages of halving the manipulations involved in preparing an assay, and allowing assay of 0.1 ml of serum. (Strict asepsis is not necessary, since *L. casei* grows so rapidly that we have never observed growth of a contaminant.) In our laboratory, serum *L. casei* values of < 3 µg per ml are considered indicative of folic acid deficiency; values of 3 to 4.9 µg per ml are strongly suggestive of folic acid deficiency; values of 5 to 6.9 µg per ml are diagnostically indeterminate; values of 7 to 15.9 µg per ml are normal; values of 16 to 24.9 µg are suggestively elevated and may indicate folic acid ingestion by normal subjects; and values > 25 µg per ml have never been found in normal subjects unless they were ingesting vitamin tablets containing folic acid.

The folic acid activity of 1 ml of erythrocytes was determined using the same methodology (8) previously applied to serum. “Reticulocyte-rich” and “reticulocyte-
poor" erythrocytes were prepared as follows. On the eighth day of therapy with 30 \(\mu \)g of vitamin \(B_12 \) daily, 100 ml of blood was obtained from Subject 5 and centrifuged. The buffy coat was discarded and the red cells were thrice washed in 0.9 per cent NaCl, discarding the topmost layer of "residual buffy coat." The middle half of the erythrocyte layer was again centrifuged to yield a "reticulocyte-rich" top layer (26 per cent reticulocytes) and a "reticulocyte-poor" bottom layer (6 per cent reticulocytes); 0.2-ml aliquots of erythrocytes were then assayed by our "standard method" (8).

Serum vitamin \(B_12 \) levels. These were determined using Euglena gracilis, var. bacillaris, by the method of Lear, Harris, Castle and Fleming (11), with various trivial modifications. In our laboratory, values < 120 \(\mu \)g per ml are low; values of 121 to 200 \(\mu \)g per ml are indeterminate; values of 200 to 900 \(\mu \)g per ml are normal; and values > 900 \(\mu \)g per ml are high.

Erythrocyte vitamin \(B_12 \) levels. The methodology of Spray (12) for extracting vitamin \(B_12 \) from serum was applied to extracting the vitamin from erythrocytes. One ml of erythrocytes, 1 ml of 0.4 N acetate buffer (pH 4.5), 0.4 ml of 0.1 per cent NaCN, and 17.6 ml distilled water were autoclaved together at 118° C for 15 minutes. After cooling and centrifugation, the supernate was assayed as if it were serum (vide supra).

In other studies (13), this extraction procedure was shown to remove approximately 81 per cent of the total vitamin \(B_12 \) radioactivity from 1 g of liver obtained at sacrifice of a baby pig who had been given daily injections of radioactive vitamin \(B_12 \) for almost 2 months. After the final injection and before sacrifice, there was a rest period of 5 days to allow equilibration of the last injections of radioactive vitamin \(B_12 \) with tissue vitamin \(B_12 \). (The extract contained 81 per cent and the precipitate contained 19 per cent of the total liver radioactivity.) A similar efficiency of extraction is assumed for erythrocytes, although we are not aware of studies using a radioactive marker to demonstrate this probability.

Estimation of formiminoglutamic aciduria. After ingestion of 20 g of L-histidine, urine was collected for 12 hours in a bottle containing 2 ml of concentrated HCl, and the quantity of formiminoglutamic acid (FIGLU) was estimated by a modification (14) of the electrophoretic method of Knowles, Frankerd and Westall (15).

Clinical and laboratory criteria for diagnosis (2). Vitamin \(B_12 \) deficiency: hematologic morphologic abnormalities in the peripheral blood (macroovalocytes and hypersegmented polymorphonuclear leukocytes) and bone marrow (megaloblasts and giant metamyelocytes); serum vitamin \(B_12 \) level < 100 \(\mu \)g per ml.

Folic acid deficiency: same morphologic criteria as for vitamin \(B_12 \) deficiency; serum folic acid activity for \(L. casei < 3 \mu \)g per ml (except in the presence of concomi-

FIG. 1. Folic acid clearance in normal subjects.
TABLE I
Pteroylglutamic acid disappearance studies*

<table>
<thead>
<tr>
<th>Subjects</th>
<th>PGA dose</th>
<th>Hct</th>
<th>FIGLU</th>
<th>Serum Bi</th>
<th>S. faecalis</th>
<th>L. casei</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg</td>
<td>mg/12 hrs</td>
<td>mg/ml</td>
<td></td>
<td>0 min</td>
<td>3 min</td>
</tr>
<tr>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1.02</td>
<td>40.0</td>
<td>277</td>
<td></td>
<td><3</td>
<td>>100</td>
</tr>
<tr>
<td>2</td>
<td>1.19</td>
<td>40.0</td>
<td>560</td>
<td></td>
<td><1</td>
<td>>100</td>
</tr>
<tr>
<td>3</td>
<td>0.99</td>
<td>41.0</td>
<td>472</td>
<td></td>
<td><1</td>
<td>>100</td>
</tr>
</tbody>
</table>

Megaloblastic anemia due to vitamin B12 deficiency

4	0.82	11.0	9.39	28	1.8	80	4.3	3.0	2.5	3	3.1	3.2	8.5	92	25	19	16	17	16	18				
4a	0.82	33.2	15	55	<1	87	19	4.1	<1	<1	<1	3	7.2	97	29	20	19	24	12					
5	1.33	13.8	86	18	<1	58	9.9	3.2	1.3	<1	<1	1.3	35	>300	240	165	94	104	62	47				
5a	1.33	33	692	3.7	>300	240	60	18	6.7	5	3.8	7	>300	212	58	33	26	23	8.4					
6	1.0	23.0	73	<3	82	14	4.6	<3.4	<3	<1	<1	<1	16	>220	60	59	38	39	41					
6a	1.0	35.5	73	<1	155	55	16	3.8	<1	<1	<1	<1	7.4	>300	240	64	31	25	28					

Megaloblastic anemia due to folic acid deficiency

7	0.436	25	371	2.4	36	15.5	6	1.5	1.5	2.4	2.7	1.3	40	16.5	8.8	2.9	3.2	2.3	3.4					
8	0.61	30	207	>3.041	<3	74	19	5.4	<3	<3	<3	<3	2.3	88	32	9.6	4.7	4.1	3.7	3.9				
9	0.75	24.2	>1,352	<1.8	71	22	5.1	<1.8	1.0	1.8	1.8	1.8	1.5	90	28	7.7	2.9	2.8	3.4	3.3				

Vitamin B12 deficiency without overt anemia

| | | | | | | | | | | | | | | | | | | | | | | | |
| 10 | 1.125 | 45 | 68 | <1 | 140 | 78 | 44 | 18.5 | 7.6 | 1.6 | <1 | <1 | 21 | 250 | 120 | 96 | 80 | 61 | 55 | 30 | 12 | | | | |

Megaloblastic anemia due to deficiencies of both vitamin B12 and folic acid

11	0.612	25	2,166	36	1.9	91	20	2.7	1.6	1.1	1.2	1.5	1.8	1.3	160	21	43	2	3.3	4.3	3.5	2.8				
12	0.75	14	177	59	<1	9.4	1.1	<1	<1	<1	<1	1.2	1.3	160	21	4	9.4	7.8	7	7.4	7.9	7.2	6.9			

* PGA = pteroylglutamic acid; FIGLU = formiminoglutamic acid.
tant vitamin B₁₂ deficiency, which may raise the serum folic acid activity above 3 μg per ml).

Pernicious anemia: anemia due to vitamin B₁₂ deficiency caused by idiopathic lack of adequate intrinsic factor secretion.

RESULTS

Normal subjects. In three normal subjects, folic acid activity for both L. casei and S. faecalis remained elevated for at least 4 hours after intravenous injection of PGA, returning to baseline levels some time between 4 and 24 hours after the intravenous dose (Figure 1 and Table I, Subjects 1-3).

Megaloblastic anemia due to folic acid deficiency. In three such subjects, within 30 minutes after the intravenous injection of PGA, an acute rise in serum folic acid activity occurred, S. faecalis activity had fallen below 2 μg per ml, and L. casei activity had fallen to below 5 μg per ml (Figure 2 and Table I, Subjects 7-9).

Megaloblastic anemia due to vitamin B₁₂ deficiency. In three such subjects, serum folic acid activity for S. faecalis fell to 3 or less μg per ml of serum within 30 minutes after the acute rise produced by the intravenous PGA injection (Figure 3). However, serum folic acid activity for L. casei remained elevated for at least 4 hours after intravenous PGA injection (Figure 3 and Table I, Subjects 4-6).

After the folic acid clearance study, Subject 4, who has been reported elsewhere in connection with his high FIGLU excretion (16), was treated with 5 μg of vitamin B₁₂ daily for 7 days, inducing a 51.9 per cent reticulocytosis and hematologic improvement. He was then allowed to relapse and, 2 months after the first clearance study (Table I, Subject 4), a second one (Table I, Subject 4a) was performed; the results were similar.

Immediately after the intramuscular administration of 30 μg of vitamin B₁₂ daily for 18 days, Subject 5 cleared folic acid activity for both organisms at a rate which was relatively normal (Table I, Subject 5a) compared with these clearances prior to therapy (Table I, Subject 5).

Immediately after the administration of 1 mg of vitamin B₁₂ intramuscularly daily for 8 days, Sub-

Legend:

X = L. Cæsæ

O = S. Faæcalis

Follic acid (7 deficient) 8--- Subjects 9---

Baseline Levels

<table>
<thead>
<tr>
<th>SUBJECT</th>
<th>L. CASEI</th>
<th>S. FAECALIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1.3</td>
<td>2.4</td>
</tr>
<tr>
<td>8</td>
<td>2.3</td>
<td><3</td>
</tr>
<tr>
<td>9</td>
<td>1.5</td>
<td><1.8</td>
</tr>
</tbody>
</table>

Figure 2. Folic acid clearance in folic acid-deficient subjects.
INTERRELATIONS OF VITAMIN B₁₂ AND FOLIC ACID METABOLISM

PROJECT 6 cleared folic acid activity for S. faecalis somewhat more rapidly than did normal subjects (Table I, Subject 6a), and cleared folic acid activity for L. casei at a rate (Table I, Subject 6a) similar to that prior to therapy (Table I, Subject 6).

Vitamin B₁₂ deficiency without overt anemia. An 80 year old white male was studied for 9 months, after routine evaluation prior to cholecystectomy led to discovery of macroovalocytes and hypersegmentation of polymorphonuclear leukocytes in his peripheral blood. His serum vitamin B₁₂ level was low but no therapy was given, since it was desired to determine how long it would take for a fall in hematocrit. The disappearance of S. faecalis activity from his serum after intravenous PGA was normal, but the disappearance of L. casei activity appeared suggestively prolonged (Table I, Subject 10; note 2- and 4-hour levels).

Megaloblastic anemia due to deficiencies of both vitamin B₁₂ and folic acid. Two such patients were studied. Subject 11 had idiopathic steatorrhea (nontropical sprue); Subject 12 had pernicious anemia with associated folic acid deficiency (presumably due to protracted anorexia). Subject 11, who had more marked folic acid deficiency, rapidly cleared folic acid activity for both microorganisms from his blood stream. Subject 12, with less marked folic acid deficiency, cleared

TABLE II

<table>
<thead>
<tr>
<th>No. of subjects</th>
<th>"Folic acid"</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>0 to 2.9</td>
<td>FAD*</td>
</tr>
<tr>
<td>24</td>
<td>3 to 4.9</td>
<td>Strongly suggestive of FAD</td>
</tr>
<tr>
<td>7</td>
<td>5 to 6.9</td>
<td>Normal</td>
</tr>
<tr>
<td>36</td>
<td>7 to 15.9</td>
<td>Diagnostically indeterminate</td>
</tr>
<tr>
<td>9</td>
<td>16 to 24.9</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>25 to 83 (Mean: 39)</td>
<td>High</td>
</tr>
</tbody>
</table>

* FAD = folic acid deficiency.
TABLE III

<table>
<thead>
<tr>
<th>Subjects</th>
<th>PGA dose</th>
<th>Serum vitamin B₁₂ levels (µg/ml)</th>
<th>Serum vitamin B₁₂ levels (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 min</td>
<td>3 min</td>
</tr>
<tr>
<td>Controls</td>
<td>mg</td>
<td>µg</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0.99</td>
<td>41</td>
<td>8.4</td>
</tr>
<tr>
<td>Megaloblastic anemia due to vitamin B₁₂ deficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0.82</td>
<td>13</td>
<td>8.5</td>
</tr>
<tr>
<td>4a</td>
<td>0.82</td>
<td>35.2</td>
<td>7.2</td>
</tr>
<tr>
<td>5</td>
<td>1.33</td>
<td>13.8</td>
<td>35</td>
</tr>
<tr>
<td>6</td>
<td>1.33</td>
<td>33</td>
<td>7</td>
</tr>
<tr>
<td>Megaoblastic anemia due to folic acid deficiency</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0.436</td>
<td>25</td>
<td>1.3</td>
</tr>
<tr>
<td>8</td>
<td>0.61</td>
<td>30</td>
<td>2.3</td>
</tr>
<tr>
<td>Megaoblastic anemia due to deficiencies of both vitamin B₁₂ and folic acid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0.612</td>
<td>25</td>
<td>1.3</td>
</tr>
<tr>
<td>12</td>
<td>0.75</td>
<td>14</td>
<td>4</td>
</tr>
</tbody>
</table>

* Subject 4 in a second relapse (see text).
† Subject 5 after therapy with vitamin B₁₂.

TABLE IV

Erythrocyte folic acid activity after intravenous injection of pteroylglutamic acid

<table>
<thead>
<tr>
<th>Subjects (controls)</th>
<th>PGA dose</th>
<th>S. faecalis (µg/ml)</th>
<th>L. casei (µg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0 min</td>
<td>3 min</td>
</tr>
<tr>
<td></td>
<td>mg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1.19</td>
<td>40</td>
<td>7.6</td>
</tr>
<tr>
<td>3</td>
<td>0.99</td>
<td>41</td>
<td>5.6</td>
</tr>
</tbody>
</table>

S. faecalis activity as rapidly as did subjects with severe folic acid deficiency. Her initial clearance of L. casei activity was rapid but then appeared to "plateau" at a level approximately 3 µg per ml above baseline (Table I).

Baseline serum folic acid activity for L. casei of patients with untreated vitamin B₁₂ deficiency. Of 100 consecutive such subjects, none of whom were ingesting vitamin tablets, 17 had initial serum folic acid activity for L. casei of 25 µg per ml or more (Table II). Minimal criteria for characterizing these patients as having vitamin B₁₂ deficiency were the presence of a megaloblastic anemia and of a serum vitamin B₁₂ level < 100 µg per ml.

Serial serum vitamin B₁₂ levels after intravenous PGA administration. These showed no significant pattern of increase or decrease (Table III).

Erythrocyte folic acid activity for L. casei. No significant measurable increase in erythrocyte folic acid activity followed the standard intravenous injection of PGA (Table IV), suggesting that the mature erythrocyte is relatively impermeable to folic acid.

Folic acid activity (and vitamin B₁₂ activity) was much higher in "reticulocyte-rich" than in "reticulocyte-poor" erythrocytes obtained during vitamin B₁₂ therapy for pernicious anemia (Table V), suggesting the relative permeability to folic acid and vitamin B₁₂ of young erythrocytes. [It has previously been observed (17) that there is an increased concentration of radioactive vitamin B₁₂ in the stroma protein of erythrocytes during active blood regeneration in anemia in dogs.] L. casei folic acid activity of leukocytes appears to be higher than that of erythrocytes (18).

Effect of specific therapy with vitamin B₁₂ on serum folic acid activity for L. casei. Table VI

TABLE V

<table>
<thead>
<tr>
<th>Concentration of vitamin activity in reticulocytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject 5 (day 8 of vitamin B₁₂ therapy)</td>
</tr>
<tr>
<td>"Folic acid"</td>
</tr>
<tr>
<td>µg/ml</td>
</tr>
<tr>
<td>5.8</td>
</tr>
</tbody>
</table>

F "Reticulocyte-rich" erythrocytes (26% reticulocytes) 273 2.004
F "Reticulocyte-poor" erythrocytes (6% reticulocytes) 29 621
TABLE VI
Effect of vitamin B₁₂ therapy on serum folic acid activity for L. Casei

<table>
<thead>
<tr>
<th>Subject</th>
<th>Before therapy</th>
<th>B₁₂ therapy (l.m.)</th>
<th>Reticulocyte peak</th>
<th>Serum FAA* during hematologic response</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hct</td>
<td>µg/ml</td>
<td>µg/day</td>
<td>%</td>
</tr>
<tr>
<td>13</td>
<td>15</td>
<td>23</td>
<td>1 × 9‡</td>
<td>18</td>
</tr>
<tr>
<td>14</td>
<td>18.5</td>
<td>12.5</td>
<td>1 × 11</td>
<td>12.2</td>
</tr>
<tr>
<td>15</td>
<td>29</td>
<td>1×12</td>
<td>6.8</td>
<td>6</td>
</tr>
<tr>
<td>16</td>
<td>16.7</td>
<td>26</td>
<td>1 × 26</td>
<td>24.9</td>
</tr>
<tr>
<td>4</td>
<td>13</td>
<td>28</td>
<td>3 × 7</td>
<td>51.9</td>
</tr>
<tr>
<td>21</td>
<td>26</td>
<td>26</td>
<td>10 × 10</td>
<td>16.5</td>
</tr>
<tr>
<td>17</td>
<td>25</td>
<td>20</td>
<td>30 × 7</td>
<td>15.1</td>
</tr>
<tr>
<td>5</td>
<td>13.8</td>
<td>18</td>
<td>30 × 20</td>
<td>40.7</td>
</tr>
<tr>
<td>22</td>
<td>20</td>
<td>24</td>
<td>50 × 6</td>
<td>9.5</td>
</tr>
<tr>
<td>20**</td>
<td>28</td>
<td>25</td>
<td>1,000 × 1</td>
<td>25</td>
</tr>
<tr>
<td>23</td>
<td>24</td>
<td>33</td>
<td>1,000 × 5</td>
<td>15.5</td>
</tr>
<tr>
<td>6</td>
<td>23</td>
<td>73</td>
<td>1,000 × 7</td>
<td>19</td>
</tr>
<tr>
<td>18</td>
<td>17</td>
<td>38</td>
<td>1,000 × 14</td>
<td>27.8</td>
</tr>
<tr>
<td>19</td>
<td>13.2</td>
<td>42</td>
<td>1,000 × 23</td>
<td>21.2</td>
</tr>
</tbody>
</table>

* FAA is folic acid activity for L. casei.
† Under day 0 appear the values before therapy; under days 1, 2, 3, etc., are those on days after therapy was begun.
‡ Second number indicates the number of days therapy was given.
§ Numbers in brackets indicate the day the value was determined.
¶ Diagnosis: B₁₂ deficiency due to total gastrectomy. In all other subjects, the diagnosis was pernicious anemia (except in Subject 20).
¶ Values during first 24 hours: 26 (5 min); 24 (15 min); 22.3 (30 min); 24.5 (1 hr); 25 (2 hrs); 28.5 (3 hrs).
** Diagnosis: B₁₂ deficiency due to regional enteritis with resection of part of the ileum (patient of Dr. Matthew Block, University of Colorado Medical Center).
shows that serum folic acid activity falls slowly during specific therapy with daily doses of 1 µg of vitamin B₁₂, but may fall relatively sharply with larger doses (5 to 1,000 µg).

DISCUSSION

As previously reported by Chanarin, Mollin and Anderson (5), we found that the clearance of folic acid activity for *S. faecalis* from the serum, after injection of 15 µg of PGA per kg of body weight, was rapid in anemic subjects with folic acid deficiency and also in anemic subjects with severe vitamin B₁₂ deficiency. This was also noted in a vitamin B₁₂-deficient subject (Subject 6a) after 8 days of administration of 1 mg of vitamin B₁₂ intramuscularly daily, when his hematocrit was 35.5, as well as in a patient with pernicious anemia (Subject 4a) in early hematologic relapse, with a hematocrit of 33.2 per cent. Thus, rapid clearance of *S. faecalis* activity may also occur in subjects with moderate vitamin B₁₂ deficiency who are only slightly to moderately anemic. However, the clearance of *S. faecalis* activity from the serum of a patient (Subject 5a) with vitamin B₁₂ deficiency, after 18 days of therapy with 30 µg of vitamin B₁₂ intramuscularly daily, when the hematocrit was 33 per cent, was essentially normal.

Microbiologic assay with *L. casei* also revealed rapid disappearance of folic acid activity from the serum after intravenous injection of PGA in patients with folic acid deficiency. However, in patients with vitamin B₁₂ deficiency, serum *L. casei* activity did not disappear as fast. In fact, a “plateau phenomenon” may be present, manifested by a tendency for serum *L. casei* activity to remain elevated well above baseline at a fairly constant level for at least 0.5 to 2 hours after the intravenous injection of PGA.

In subjects with vitamin B₁₂ deficiency, the combination of rapid clearance of *S. faecalis* activity and slow clearance of *L. casei* activity suggests that in such subjects PGA (which is available to both *S. faecalis* and to *L. casei*) is rapidly converted, perhaps in the liver, to a form only available to *L. casei*. This *L. casei*-active form then appears to “pile up” in the serum, suggesting that vitamin B₁₂ is required for its utilization.

During the course of therapy with daily doses of 1 µg vitamin B₁₂, changes in serum folic acid activity for *L. casei* appear to occur very slowly, as may changes in serum iron when folic acid deficiency is treated with 50 µg of pteroylglutamic acid daily (19). When larger daily doses (5 to 1,000 µg) of vitamin B₁₂ are used, serum folic acid activity for *L. casei* appears to fall much more sharply, and may reach levels below normal before rising again into the normal range. This drop in serum folic acid activity for *L. casei* may have a meaning similar to the drop in serum iron (2, 20) which occurs during vigorous specific therapy of megaloblastic anemias.

Of the original ten patients with pernicious anemia in whom serum folic acid activity for *L. casei* was measured, one had a value of 43 µg per ml (21). This value was described in the original report as “high, but of unknown significance.” In the present report, we are able to throw some light on the significance of that finding. In the present study, review of 100 consecutive patients with vitamin B₁₂ deficiency revealed that 17 had initial serum folic acid activity for *L. casei* of 25 µg per ml or more, and nine had values of 16 to 24.9 µg per ml (Table II), despite frequent protracted anorexia, which would be expected to lower such activity. Waters and Mollin (22) have also observed increased serum folic acid activity for *L. casei* in untreated Addisonian pernicious anemia. The majority of our 100 patients had pernicious anemia. Those with serum *L. casei* folic acid activity < 7 µg per ml frequently had debilitating complications, which may have led to associated anorexia with inadequate ingestion of folic acid, such as chronic genitourinary tract infection, alcoholism, or marked neurologic disability due to past cerebrovascular accident. One patient also had lupus erythematosus. Serum folic acid activity < 7 µg per ml was also frequent among the patients with vitamin B₁₂ deficiency who did not have pernicious anemia. These were mainly patients with gastrointestinal dysfunction due to structural or functional small bowel damage, which may result in malabsorption for folic acid, and included patients with partial small intestine resection, idiopathic steatorrhea, total or subtotal gastrectomy with subsequent malabsorption, and carcinoma with abdominal metastases. Although in presumably normal subjects values of 7 to 24 µg per ml have been observed, values above 16 µg per ml are infrequent. These find-
ings, like the PGA clearance studies, suggest a
tendency of the L. casei-active form of folic acid
activity to accumulate in the serum of subjects
with vitamin B₁₂ deficiency, as does the finding of
normal serum L. casei activity despite moderately
protracted anemia in many other patients with
pernicious anemia (10).

In view of the tendency of L. casei-active folic
acid activity to accumulate in the serum of sub-
jects with vitamin B₁₂ deficiency, it is possible that
a low normal value for such activity may be pres-
ent in the serum of a vitamin B₁₂-deficient subject
with folic acid stores inadequate to sustain normal
hematopoiesis, just as a normal serum iron level
may be present in patients with untreated mega-
loblastic anemia who do not have iron stores ade-
quate to sustain normal hematopoiesis (2).

Recent studies (23) suggest that most of the
L. casei activity in human serum is due to a ma-
terial similar or identical to N⁵-methyl-tetrahydro-
folinic acid (N⁵-methyl THFA), the folic acid co-
enzyme active as an intermediate in methionine
biosynthesis (24-29), which requires vitamin B₁₂
in order to act (25, 26, 30, 31). Table VII sums-
marizes present knowledge concerning the folic
acid activity for microorganisms of various folic
acid analogues.

Earlier clinical investigation of patients with
vitamin B₁₂ deficiency has also provided evidence
suggesting that vitamin B₁₂ is required for normal
folic acid metabolism: 1) While normally the liver
folic acid stores appear to be mainly folinic acid-
like material, in vitamin B₁₂ deficiency the stores
had appeared to be mainly folic acid (32, 33). How-
ever, more recent studies indicate that the bulk of normal liver stores may be N⁵-methyl
THFA which is only active for L. casei (23, 28,
34, 35). It is evident that much of the data in the
literature will have to be re-evaluated in the light
of this recent work. In severely vitamin B₁₂-de-
ficient sheep, grazing on land deficient in cobalt,
liver folic and folinic acid activity for L. casei and
L. citrovorum, respectively, plummet to very low
levels (36). 2) After an oral test dose of PGA,
less folic acid appears in the urine of pernicious
anemia patients than in the urine of normal sub-
jects (37). In vitamin B₁₂-deficient subjects
previously treated with folic acid, the injection of
1 mg of vitamin B₁₂ doubles the urinary folic acid
activity excreted (38). 3) Whole blood folic acid
activity for S. faecalis appears to be low in one-
half of patients with pernicious anemia (39). 4) Large doses of folic acid will almost invariably
induce at least temporary or partial hematologic
remission in vitamin B₁₂-deficient subjects (40).
Conversely, large quantities of vitamin B₁₂ will
induce partial hematologic remission in subjects
with folic acid deficiency (41). 5) Formiminoglu-
tamic acid (FIGLU), an intermediate in the ca-
tabolism of histidine, found in the urine (some-
times only after an oral dose of histidine) in folic
acid deficiency (42, 43), also appears in the urine
of some vitamin B₁₂-deficient subjects, sometimes
in very large quantities (2, 14, 16, 21, 40, 44, 45),
and is generally present in large quantities in the
urine of vitamin B₁₂-deficient rats (46) and chicks
(47).

Figure 4 presents, in abbreviated diagrammatic
form, a hypothetical explanation for the "piling up" of L. casei activity in serum and of FIGLU
in urine in vitamin B₁₂ deficiency. In this system,
vitamin B₁₂ acts as coenzyme and folic acid as
substrate. If one considers the two agents to in-
teract in this relationship, one has a facile explana-
tion for the fact that a relatively small increase (to
400 µg) (48) above the approximate minimal daily
requirement (50 µg) (19) for folic acid may pro-
duce hematologic response in pernicious anemia,
whereas a much larger increase (to 100 to 500 µg)
(41) above the approximate minimal daily re-
quirement (0.1 µg) (49) for vitamin B₁₂ appears
necessary to produce a hematologic response in
folic acid deficiency. Figure 4 may also explain
the apparent decrease in FIGLU excretion by folic
acid-deficient subjects when treated with 500 µg
of vitamin B₁₂ daily (41).

The finding that methionine decreases FIGLU

Table VII

<table>
<thead>
<tr>
<th></th>
<th>Leuconostoc citrovorum</th>
<th>S. faecalis</th>
<th>L. casei</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduced pteroylmonoglutamates (except N⁵-methyl)</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Pteroylglutamic acid</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>N⁵-methyl folate-H₂</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>N⁵-methyl folate-H₄</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Pteroylglutamates</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

*S. faecalis does not grow well on some diglutamates; L. citrovorum may grow on some reduced di- and triglutamates (31, 52, 63).
excretion in vitamin B₁₂-deficient rats (46) and chicks (47) has been discussed in terms of its possible biochemical meaning by Noronha and Silverman (50). They noted that methionine administration to the vitamin B₁₂-deficient rat eliminated FIGLU excretion and changed the folate pattern of the liver from predominantly N⁵-methyl THFA to N⁵- and N¹₀-formyl THFA. They concluded that methionine provides an acceptor, directly or indirectly, for the methyl group of N⁵-methyl THFA, thus releasing THFA for the metabolism of carbon 2 of histidine (the formimino carbon), which then appeared as the N¹₀-formyl group of N¹₀-formyl THFA. It is also possible, however, that providing methionine may spare the entire pathway involving N⁵-methyl THFA, allowing greater production of THFA via other (un-blocked) pathways. This could occur if, by negative feedback, there was suppression of the activity or synthesis of an enzyme required for the production of the metabolically blocked N⁵-methyl THFA.

As Figure 4 indicates, the increase in both serum L. casei activity and urine FIGLU may be
due to "piling up" of these substrates, whose utilization is blocked by lack of vitamin B₁₂. The "piling up" of N⁵-methyl THFA reduces the amount of folic acid available to travel via other metabolic pathways. Thus, this one "metabolic trap" could conceivably produce a generalized slowdown in all 1-carbon transfers. This may explain much of the apparent folic acid deficiency in many patients with vitamin B₁₂ deficiency.

Figure 5 presents the interrelations of the folate coenzymes in a more detailed context (23, 25, 26, 29, 51–56), which indicates the possible alternate pathways to THFA, whose variable activity may explain why FIGLU "piles up" in only a third (16, 45) of patients with pernicious anemia. Since N⁵-methyl THFA may be both the main circulating (23) and the main storage (liver) (23, 28, 34, 35) folate form in normal man, it is possible that this form of folic acid may play an even larger role in human metabolism than present studies suggest.

Figure 6 depicts the structure of pteroylglutamic (folic) acid, with the various folate coenzymes superimposed thereon. Note the close resemblance of the 5-membered ring of N⁵,10-methenyl THFA to the hydantoin ring of diphenylhydantoin (Dilantin, Phenytoin). Although prior work using S. faecalis led to the belief that "Folic acid tests have not indicated a deficiency, but rather a failure to utilize normal serum levels" (57), we found low folate activity for L. casei in the serum of 11 patients who had been receiving anticonvulsant therapy for periods in excess of 6 months (58). One may speculate that the folic acid-responsive megaloblastic anemia which sometimes occurs in such patients (2, 57, 59–62) may be due to weak competitive inhibition by anticonvulsants of the conversion of N⁵,10-methenyl THFA to N⁵-methyl THFA, possibly at the level of absorption of food folates. Competitive inhibition of the 6-membered pyrimidine ring of folic acid, as suggested by Girdwood (62), may explain the megaloblastic anemia.

Figure 6. Structure of pteroylglutamic (folic) acid and various folate coenzymes.
infrequently associated with anticonvulsants other than Dilantin.

These studies support the possibility that the megaloblastic anemia which follows vitamin B_{12} deprivation may be partly the result of secondarily deranged folic acid metabolism. This may, in large measure, explain why the hematologic picture is the same in vitamin B_{12} deficiency as it is in folic acid deficiency. Much of this hematologic similarity may also be due to the fact that lack of either folic acid or vitamin B_{12} reduces thymidylate synthesis, as indicated in Figure 5 (51–56).

SUMMARY

In slightly to severely anemic vitamin B_{12}-deficient subjects, after the intravenous injection of 15 μg pteroylglutamic acid (PGA) per kg of body weight, folic acid activity for *S. faecalis* disappears rapidly but activity for *L. casei* disappears slowly from the serum.

Markedly elevated serum folic acid activity for *L. casei* (25 or more μg per ml) was observed in 17 of 100 consecutive subjects with vitamin B_{12} deficiency.

During specific therapy with daily doses of 5 to 1,000 μg of vitamin B_{12}, serum folic acid activity for *L. casei* may fall sharply and may reach levels below normal before rising again into the normal range. The phenomenon may be due to release of the block in utilization of *L. casei* folic acid activity caused by lack of vitamin B_{12}, with subsequent rapid utilization in hematopoiesis, and may be similar to the fall in serum iron during therapy. Serum folic acid activity for *L. casei* may fall more slowly during specific therapy with smaller (1 μg) daily doses of vitamin B_{12}.

These findings suggest that in the vitamin B_{12}-deficient subject, PGA is rapidly converted to an *L. casei*-active and presumably metabolically useful form (probably N5-methyl-tetrahydrofolic acid) which then "piles up" in the serum because vitamin B_{12} is required for its normal utilization. This "piled up" folate activity would tend to reduce the amount of folic acid available for other 1-carbon unit transfers. These studies, by providing evidence for the concept that vitamin B_{12} is required for normal folic acid metabolism, support the possibility that the apparent folic acid deficiency in many patients with vitamin B_{12} deficiency may be in large measure due to secondarily deranged folic acid metabolism.

Two minor observations of the present study were:

1. The intravenous injection of 15 μg of PGA per kg of body weight did not appear to affect significantly either the serum vitamin B_{12} level or the folic acid activity of the red cell for *L. casei*. The latter finding suggests that the mature erythrocyte is relatively impermeable to folic acid.

2. Folic acid activity for *L. casei* and vitamin B_{12} activity for *E. gracilis* both may be much higher in reticulocyte-rich than in reticulocyte-poor erythrocytes after vitamin B_{12} therapy. This suggests that the reticulocyte or its precursors, or both are relatively permeable to folic acid and vitamin B_{12}.

ACKNOWLEDGMENT

The authors are indebted to Mrs. Rebecca Fisher Dunn, Mrs. Barbara Bean Mummey, Miss Brenda Conti, and Mrs. Nancy Cunneen Boardman for doing the microbiologic assays, and to Misses Geneva Daland, Carola Kapf, and Louise Jaskiel for obtaining the hematologic data.

REFERENCES

INTERRELATIONS OF VITAMIN B\textsubscript{12} AND FOLIC ACID METABOLISM

58. Herbert, V., and Zalusky, R. Unpublished data.

